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Abstract

The free vibration of circular cylindrical thin shells, made up of uniform layers of isotropic or specially
orthotropic materials, is studied using point collocation method and employing spline function
approximations. The equations of motion for the shell are derived by extending Love’s first approximation
theory. Assuming the solution in a separable form a system of coupled differential equations, in the
longitudinal, circumferential and transverse displacement functions, is obtained. These functions are
approximated by Bickley-type splines of suitable orders. The process of point collocation with suitable
boundary conditions results in a generalized eigenvalue problem from which the values of a frequency
parameter and the corresponding mode shapes of vibration, for specified values of the other parameters, are
obtained. Two types of boundary conditions and four types of layers are considered. The effect of
neglecting the coupling between the flexural and extensional displacements is analysed. The influences of
the relative layer thickness, a length parameter and a total thickness parameter on the frequencies are
studied. Both axisymmetric and asymmetric vibrations are investigated. The effect of the circumferential
node number on the vibrational behaviour of the shell is also analysed.
r 2002 Published by Elsevier Science Ltd.

1. Introduction

Circular cylindrical shells are widely used in fields like aviation, rocketry, missiles and chemical
and other industries. Layered composites are increasingly used in them because of their possible
higher specific stiffness and better damping and shock absorbing characteristics over the
homogeneous ones. In relation to the studies made and reported on vibrational behaviour of

*Corresponding author. Tel.: +91-44-237-6035; fax: +91-44-237-5620.

E-mail address: viswa20@hotmail.com (K.K. Viswanathan).

0022-460X/03/$ - see front matter r 2002 Published by Elsevier Science Ltd.

PII: S 0 0 2 2 - 4 6 0 X ( 0 2 ) 0 0 9 2 3 - 9



circular cylindrical shells with homogeneous walls, the studies on such shells with laminated wall
structure are only a few [1]. Baker and Herrmann [2] analysed three layered (Sandwich) shells. The
theory developed was of 10th order including the effects of shear deformation, rotary inertia and
initial stress. Markus [3] considered damped axisymmetric vibrations of two-layered cylindrical
shells. The acoustic characteristics of such shells were studied by Chonan [4] assuming thick shell
theory.
Dong [5] and Jones [6] used Donnell’s [7] shallow shell theory while Bert et al. [8], Stavsky and

Loewy [9] and Greenberg and Stavsky [10] used Love’s [11] first approximation theory for their
vibrational analyses of layered cylindrical shells. Significant work has been done of finite element
modelling of layered anisotropic composite plates and shells [12]. Narita et al. [13] studied free
vibration of angle-ply laminated cylindrical shell, using Ritz method and Fl .ugge-type shell theory.
Using a modification of Sander’s shell theory and the third order shear deformation shell theory
of Reddy, Khdeir and Reddy [14] analysed the dynamic and static behaviour of cross-ply
laminated cylindrical and spherical incomplete shells.
The spline strip method was used by Mizusawa and Kito [15] to study the vibration of cross-ply

laminated cylindrical panels. The method involved expressing displacement functions in a strip
element as the product of basic function series in the axial direction and B-spline functions in the
circumferential direction. Lam and Loy [16] considered the vibration of multi-layered cylindrical
shell under nine different boundary conditions using Love’s first approximation theory, with
beam functions as axial modal functions, and the energy method. However, there seems to be no
work carried so far on vibrational analysis of laminated cylindrical shells using Bickley spline
function as done in the current analysis.
In this paper, the free vibrations of circular cylindrical shells made up of layers of constant

thickness are analysed. The problem is formulated by extending Love’s first approximation theory
on homogeneous shells to these cases. The layers of the material are considered to be thin, linearly
elastic and specially orthotropic or isotropic and assumed to be bonded perfectly together and to
move without interface slip. The governing differential equations of motion are obtained in terms
of the reference surface displacement components.
Four types of layer materials are considered in all and two sets of boundary conditions are

imposed. Both axisymmetric and asymmetric vibrations are treated.
The differential equations of motion obtained are coupled in the longitudinal, circumferential

and transverse displacement components. Assuming the solution in a separable form one gets a
system of ordinary, but still coupled, differential equations on a set of assumed displacement
functions which are functions of the meridional co-ordinate only. The equations have no closed-
form solution in general. Numerical solution techniques have to be resorted to. In preference to a
number of numerical methods available for such problems, like those of Galerkin, Runge–Kutta,
Frobenius and Chebyshev collocation, a spline approximation technique is used. The basis for the
choice of this method is that a chain of lower order approximations, as used here, can yield greater
accuracy than a global higher order approximation. This conjecture was made and tested
successfully by Bickley [17] over a two-point boundary value problem with a cubic spline.
Subsequently, Soni and Sankara Rao [18], Irie et al. [19], Irie and Yamada [20], Navaneetha-
krishnan and Chandrasekaran [21], Navaneethakrishnan et al. [22], Navaneethakrishnan [23] and
a few others have also demonstrated this, but most of them used only a single spline function in a
problem.
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In this work up to three displacement functions are approximated by splines, which are cubic or
quintic, in a system of coupled equations. Their excellent convergence characteristics are brought
out. These splines are simple and clear for analytical process and have significant computational
advantage.
The solution procedure consists in modifying the differential equations obtained so as to admit

quintic and cubic spline approximations for the displacement functions. Collocation with these
splines yield a set of field equations which, along with the equations of boundary conditions,
reduce to a system of homogeneous simultaneous algebraic equations on the assumed spline
coefficients. The resulting generalized eigenvalue problem is solved for a frequency parameter
using eigensolution technique to obtain as many eigenfrequencies as required, starting from the
least. A search technique is also used at times. From the eigenvectors, the spline coefficients are
computed from which the mode shapes are constructed.
Since the effect of coupling between bending and stretching is most significant when the number

of layers is two, only two-layered shells are considered for detailed study.
Extensive parametric studies are made. The effects of a length parameter, the relative thickness

of the layers, the overall thickness-to-radius ratio, the circumferential wave number and the
boundary conditions on the frequency parameter are analysed. The effect of neglecting the
coupling between bending and stretching is also investigated. Significant mode shapes are
presented. The results are presented in terms of graphs and tables and discussed.

2. Formulation

A thin circular cylindrical shell made up of uniformly thick layers is considered. Each layer is
assumed to be homogeneous, linearly elastic and isotropic or specially orthotropic, with the lines
of orthotropy coinciding with the principal axes of the shell surface. The layers are perfectly
bonded at the interfaces.
The geometry of the laminated cylindrical shell of constant thickness and the arrangement of its

layers are clarified in Fig. 1. The thickness of the layers are not completely independent. Their

Fig. 1. Layered circular cylindrical shell of constant thickness: geometry.
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dependence is given by X
k

ðz2k � z2k�1Þrk ¼ 0; ð1Þ

where rk is the density of the kth layer and zk is the distance of the outer boundary of the kth layer
from the reference surface.
The stress and moment resultants are expressed in terms of the longitudinal, circumferential

and transverse displacement components u; v and w of a general point of the reference surface. The
displacement components u; v;w are assumed in the form

uðx; y; tÞ ¼ UðxÞ cos nyeiot;

vðx; y; tÞ ¼ V ðxÞ sin nyeiot; ð2Þ

wðx; y; tÞ ¼ W ðxÞ cos nyeiot;

where x and y are the longitudinal and rotational co-ordinates, o is the angular frequency of
vibration, t is the time and n is the circumferential node number. When n ¼ 0; the vibration
becomes axisymmetric.
Using Eq. (2) in the constitutive equations and the resulting expressions for the stress and

moment resultants in the equations of equilibrium, the governing equations of motion in U ;V
and W are obtained in the form

L11 L12 L13

L21 L22 L23

L31 L32 L33

0
B@

1
CA

U

V

W

8><
>:

9>=
>; ¼ f0g; ð3Þ

where Lij are linear differential operators in x:
The following non-dimensional parameters are introduced:

l ¼ co

ffiffiffiffiffiffiffiffi
R0

A11

r
; a frequency parameter;

dk ¼
hk

h
; the relative layer thickness of the kth layer;

H ¼
h

r
; the thickness parameter;

L ¼
c

r
; a length parameter;

X ¼
x

c
; a distance co-ordinate

R ¼
r

c
; a radius parameter: ð4Þ

Here c is the length of the cylinder, r is its radius, hk is the thickness of the kth layer, h is the
total thickness of the shell, R0 is the inertial coefficient and A11 is a standard extensional rigidity
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coefficient. When only two layers are considered we write d ¼ d1 and hence d2 ¼ 1� d: Clearly
0pXp1:
The operators appearing in Eq. (3) are

L11 ¼
d2

dX 2
� S10

n2

R2
þ l2; ð5Þ

L12 ¼ S2 þ S10 þ
S5 þ 2S11

R

� �
n

R

d

dX
; ð6Þ

L13 ¼ �S4
d3

dX 3
þ ðS5 þ 2S11Þ

n2

R2
þ

S2

R

� �
d

dX
; ð7Þ

L21 ¼ � S2 þ S10 þ
S5 þ S11

R

� �
n

R

d

dX
; ð8Þ

L22 ¼ S10 þ
3S11

R
þ
2S12

R2

� �
d2

dX 2

� S3 þ
2S6

R
þ

S5

R2

� �
n2

R2
þ l2; ð9Þ

L23 ¼ S5 þ 2S11 þ
S8 þ 2S12

R

� �
n

R

d2

dX 2

� S6 þ
2S9

R

� �
n3

R3
� S3 þ

S6

R

� �
n

R2
; ð10Þ

L31 ¼ S4
d

dX 3
� ðS5 þ 2S11Þ

n2

R2
þ

S2

R

� �
d

dX
; ð11Þ

L32 ¼ S5 þ 2S11 þ
S8 þ 4S12

R

� �
n

R

d2

dX 2

� S6 þ
S9

R

� �
n3

R3
� S3 þ

S6

R

� �
n

R2
; ð12Þ

L33 ¼ � S7
d4

dX 4
þ 2ðS8 þ 2S12Þ

n2

R2

d2

dX 2
þ
2S5

R

d4

dX 2

� S9
n4

R4
þ 2S6

n2

R3
þ S3

1

R2

� �
þ l2; ð13Þ

where Si (i ¼ 2;y; 12) are as defined in Appendix A.
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3. Method of solution

The differential equations in Eq. (3) contain derivatives of third order in U ; second order in V

and fourth order in W : Therefore, their form is not convenient to the solution procedure we
propose to adopt. Hence, the equations are combined within themselves and a modified set of
equations are derived.
To modify the equations, first of Eq. (3) is differentiated with respect to X once and used to

eliminate U 000ðX Þ in the third equation. The modified set of equations are of order 2 in U ; order 2
in V and order 4 in W ; given by

L11 L12 L13

L21 L22 L23

L	
31 L	

32 L	
33

0
B@

1
CA

U

V

W

8><
>:

9>=
>; ¼ f0g; ð14Þ

in which the new operators are

L	
31 ¼ S4S10

n2

R2
� ðS5 þ 2S11Þ

n2

R2
�

S2

R

� �
d2

dx2
þ l2S4

d

dx
; ð15Þ

L	
32 ¼ S5 þ 2S11 þ

S8 þ 4S12

R

� �
n

R
� S4 S2 þ S10 þ

S5 þ 2S11

R

� �
n

R

� �
d2

dX 2

� S6 þ
S9

R

� �
n3

R3
� S3 þ

S6

R

� �
n

R2
; ð16Þ

L	
33 ¼ 2ðS8 þ 2S12Þ

n2

R2
þ
2S5

R
� S4ðS5 þ 2S11Þ

n2

R2
� S4

S2

R

� �
d2

dX 2

þ ðS2
4 � S7Þ

d4

dX 4
� S9

n4

R4
� 2S6

n2

R3
� S3

1

R2
� l2: ð17Þ

The boundary conditions considered are

(1) (C�C): both the ends clamped,
(2) (H�H): both the ends hinged.

Each pair of the boundary conditions imposed gives eight equations involving U ; V and W :
Thus, Eq. (14) together with each of these cases of boundary conditions constitute a well-defined
two-point boundary value problem.
Numerical method of solution is resorted to, since no closed-form solution exists for these

problems in their general form. The spline technique is used since it is relatively simple and elegant
and uses a series of lower order approximation rather than a global higher order approximation,
affording fast convergence and high accuracy.
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The displacement functions UðX Þ; VðX Þ and W ðX Þ are approximated by the cubic and quintic
spline functions U	ðX Þ; V	ðX Þ and W 	ðX Þ; as stated below:

U	ðX Þ ¼
X2
i¼0

aiX
i þ
XN�1

j¼0

bjðX � XjÞ
3HðX � XjÞ;

V	ðX Þ ¼
X2
i¼0

ciX
i þ
XN�1

j¼0

djðX � XjÞ
3HðX � XjÞ; ð18Þ

W 	ðX Þ ¼
X4
i¼0

eiX
i þ
XN�1

j¼0

fjðX � XjÞ
5HðX � XjÞ:

Here N is the number of intervals into which the range [0,1] of X is divided and HðX Þ is the
Heaviside step function. The points of division X ¼ Xs ¼ s=N; (s ¼ 0; 1;y;N) are chosen as the
knots of the splines, as well as the collocation points. Imposing the condition that the differential
equations given by Eq. (14) are satisfied by these splines at these points, a set of 3n þ 3
homogeneous equations in 3n þ 11 unknown spline coefficients: ai; bj; ci; dj; ek; fj (i ¼ 0; 1; 2; k ¼
0; 1; 2; 3; 4; j ¼ 0; 1; 2;y;N � 1), are obtained. They are the field equations given in Appendix B.
Each of the sets (C–C) and (H–H) of the boundary conditions, on using the spline

approximations, gives eight equations on the spline coefficients. These equations along with the
field equations, reduce to a system which can be written in the form

½P�fqg ¼ L½Q�fqg; ð19Þ

where [P] and [Q] are square matrices, {q} is a column matrix and L ¼ 1=l2 where l is the
frequency parameter. This is a generalized eigenvalue problem in which L or l2 is the
eigenparameter and {q} is the eigenvector.

4. Convergence and comparative studies

Since matrices of large orders are involved, numerical computations were done using double
precision arithmetic. After a number of trials it was found that the number of knots of the spline
function N could be taken as 12. The convergence studies made are not presented for want of
space. As mentioned earlier only two layered shells were considered. Though high strength
graphite (HSG), S-glass epoxy (SGE), PRD and steel (St) were considered, the results on HSG–
SGE and HSG–PRD combinations only are presented graphically.
For the purpose of gaining conviction on the correctness of the analysis and accuracy of the

results, the values of the natural frequencies o obtained by Goncalves and Ramos [24], Arnold
and Warburton [25] (experimental), Smith and Haft [26] and Au-Yang [27] (approximate), for a
homogeneous shell under clamped – clamped conditions for the axial mode values m ¼ 123 and
the circumferential mode values n ¼ 226 are compared with the corresponding results obtained
by the present method. The parametric values used are c ¼ 511:2mm, r ¼ 216:2mm, h ¼ 1:5mm,
E ¼ 1:83� 1011 N/m2, n ¼ 0:3; r ¼ 7492 kg/m3 [28]. The comparison is given in Table 1. The
agreement of the current results, particularly with the experimental results, is very good. The
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slightly higher differences with the other results quoted must be due to the differences in the
formulations, methods of solution and numerical accuracy involved.

5. Results and discussion

Fig. 2 describes the manner of variation of the frequency parameter l with respect to d; the ratio
of the thickness of the inner layer to the entire thickness. Figs. 2(a) and (b) correspond to the shell
of HSG–SGE layer combination, with C–C and H–H boundary conditions respectively. The layer
materials in respect of Figs. 2(c) and (d) are HSG–PRD, with the boundary conditions C–C and
H–H, respectively. The first three meridional modes (m ¼ 1; 2; 3) are considered here and in all the
studies that follow. The continuous lines pertain to the inclusion of the coupling effect between
extensional and flexural displacements (Bija0) in the analysis, while the dashed lines correspond
to ignoring this coupling effect (Bij ¼ 0). The values of the ratio of the shell thickness to radius
(H) and the ratio of the shell length to the radius (L) are taken as 0.02 and 1.5, respectively.
It is clearly seen that as d increases l decreases in the case of HSG–SGE layers; and increases in

the case of HSG–PRD layers. For the extreme values of d; equal to 0 or 1, the shell becomes
homogeneous, with the material of either of the two layers. It is seen that it is possible to attain a
desired frequency, between these two extreme values (some times even outside this range of
frequencies) by suitably choosing the value of d: This must be interesting from the design point of

Table 1

Comparison of natural frequencies for cylinder shell clamped edges

Mode Natural frequencies in Hz

Axial

mode m

Circumferential

node n

Present

method

Experimental

results: Arnold

and Warburton

[25]

Analytical

results:

Smith and

Haft [26]

Approximate

method: Au-

Yang [27]

Goncalves and

Ramos [24]

1 2 1299 1240 1429 1485 1405

1 3 2240 2150 2335 2364 2221

1 4 3872 3970 4142 4147 4004

1 5 6262 6320 6500 6504 6360

1 6 9125 9230 9400 9396 9251

2 2 2660 2440 2682 2852 2904

2 3 2574 2560 2771 2813 2715

2 4 4043 4160 4335 4350 4212

2 5 6491 6475 6644 6655 6510

2 6 9276 9380 9840 9533 9384

3 2 4364 —a 4314 4579 4817

3 3 3483 3380 3570 3663 3623

3 4 4417 4540 4717 4749 4629

3 5 6728 6720 6903 6923 6788

3 6 9540 9540 9630 9763 9622

aNo experimental results available from literature.

K.K. Viswanathan, P.V. Navaneethakrishnan / Journal of Sound and Vibration 260 (2003) 807–827814



view. Under the same boundary conditions, lm (for each m considered) is highest for the
homogeneous SGE shells (at d ¼ 0 in Figs. 2(a) or (b)) and the least for homogeneous PRD shells
(at d ¼ 0 in Figs. 2(c) or (d)) and assumes a value in between them for homogeneous HSG shells
(at d ¼ 1 in (a), (b), (c) or (d)).

Fig. 2. Variation of frequency parameter with relative layer thickness and the effect of coupling and boundary

conditions.
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The neglect of coupling is seen to generally increase the frequency parameter values. This
increase is almost unnoticeable in the case of the fundamental frequencies and becomes more and
more significant with increasing mode number. The highest per cent increases in the case of HSG–
SGE shell considered for the three modes under C–C conditions are 0.077%, 0.748% and 3.2%.
The corresponding figures for the shell under H–H conditions are 0.104%, 0.274% and 1.438%.
In general, these increases are so small that the neglect of the coupling may not introduce
appreciable errors in computation of frequencies; but may result in some computational
advantage. In the current work, however, the coupling was not ignored. When the other
conditions are identical, frequencies are higher for shells under C–C conditions than for shells
under H–H conditions.
These observations are in agreement with those made in the cases of laminated plates and

conical shells [21–23].
The frequency parameter l is explicitly a function of the length c of the cylinder. Hence, when

studying the influence of the length of the cylinder on its vibrational behaviour, the actual
frequency o and not l is considered. Since a specific length is then to be prescribed, the thickness
of the shell h is taken to be 1 cm. Fig. 3 describes how the length parameter L affects o (in 104Hz)
for HSG–SGE and HSG–PRD layered cylinders under C–C and H–H boundary conditions, with
H ¼ 0:05 and d ¼ 0:4: As L increases, o is observed to decrease in general. The decrease is fast for
very short shells (for 0:5oLo0:75 in this study), the rate of decrease increasing with higher
modes. There is a rapid change in the rate of decrease of o in the interval 0:75oLo0:85 after
which the decrease is very low. The fundamental frequencies are almost constant for L > 0:85:
Similar phenomena were observed in the case of conical shells also [21]. The per cent changes in
om (m ¼ 1; 2; 3) over the range of 0:5oLo2:0 for HSG–SGE shell are 246.34%, 708.02% and
1092.41% for C–C conditions, and 90.05%, 463.03% and 923.56% for H-H conditions.
Fig. 4 describes how the overall thickness parameter H affects the frequency parameter l for

shells described in the figure. l increases with H; almost linearly. The rate of increase increases
with the value of the mode number. The fundamental frequencies are mostly unaffected. The per
cent changes in lm (m ¼ 1; 2; 3) over the range 0:01oHo0:06 for HSG–SGE shell are 3.519%,
22.931%, 69.01% for C–C boundary conditions, and 0.72%, 10.61%, 43.57% for H–H
conditions.
Some typical mode shapes of axisymmetric vibrations of a HSG–SGE shell are presented in

Fig. 5. The transverse deflections are predominant. For each meridional mode number the W -
and U- displacements are normalized with respect to maximum W : The existing perfect symmetry
in material and geometric properties, including the boundary conditions, is exhibited in the
perfectly symmetric or antisymmetric mode shapes. The U-values are much lower than the
corresponding W -values. This phenomenon is more pronounced in the case of H–H boundary
conditions (for example, for the fundamental modes, Umax=WmaxC0:03 and 0.005 for the C–C
and the H–H conditions, respectively).
Figs. 6–9 relate to studies on asymmetric vibrations of layered cylindrical shells. The influence

of the circumferential node number n on the frequency parameter l is studied in Fig. 6. HSG–
SGE and HSG–PRD shells, each under C–C and H–H boundary conditions, are considered. The
l2n curves corresponding to inclusion and omission of the coupling between the flexural and
extensional displacements (Bija0 and Bij ¼ 0) are presented for m ¼ 1; 2; 3: It is seen at the outset
that n affects l significantly. The effect is higher for lower meridional mode values. In general, l
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decreases with n up to some value of n and then increases. lmin occurs approximately in the range
4ono7: The percentage of the maximum decrease in l1 over value of l1 for n ¼ 0 for the four
cases considered in the figure are (a) 0.5%, (b) 0.104%, (c) 0.181% and (d) 0.191%. It can also be
seen that the coupling affects the frequencies of asymmetric vibrations generally for all n
considered. Omission of coupling results in increase in the values of frequencies. The effect is felt
more for HSG–SGE layer combinations than for the other. It is the higher for higher value of m

Fig. 3. Effect of length of the shell and boundary conditions on frequencies.
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for any fixed n: However, the relative increase is always so small that the neglect of this coupling
will not introduce any appreciable error in the values of l:
In Fig. 7 the influence of the length parameter L on the frequencies om are analysed for two

cases of asymmetric vibrations, n ¼ 4 and 8, of a HSG–SGE shell under C–C and H–H
conditions. The pattern of this influence is similar in nature to the corresponding cases of
axisymmetric vibrations and differ only in magnitudes. The steep decrease in values of om up to

Fig. 4. Effect of thickness parameter and boundary conditions on frequency parameter.
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some values of L and slow decrease afterwards are the typical phenomena seen here as in the cases
of axisymmetric and asymmetric vibrations of conical shells and circular plates also. The per cent
changes in o1 over the range of L considered, for the four cases depicted are, respectively (a)
749.71%, (b) 411.15%, (c) 281.85% and (d) 133.47%.
The dependence of lm on H; the thickness parameter of the same shell under the same two types

of boundary conditions for the same two cases of asymmetric vibrations is shown in Fig. 8. As in
the case of n ¼ 0; lm increases almost linearly with H: The linearity is more striking for n ¼ 8 than
for n ¼ 4: The effect is more pronounced with higher values of m: The per cent change in l1 for the
four cases considered are: (a) 78.89%, (b) 59.64%, (c) 418.87% and (d) 411.14%. Thus, the effect
is higher for higher n under the same boundary conditions; and higher for C–C boundary
conditions for a fixed n:
The mode shapes of asymmetric vibrations for n ¼ 4 and 8 of a typical shell, of the description

given in the figure, are presented in Fig. 9. The perfect symmetry or asymmetry in the mode shapes
are as expected and noteworthy. Some of the mode shapes for n ¼ 4 and 8 coalesce into one and
the same. Indeed, the axial vibration modes are similar for all values of n considered. The axial
vibration (W) modes obtained for m ¼ 1; 2; 3 compare very well with the mode shapes presented
by Goncalves and Ramos [24]. The transverse displacements are dominant in the considered
asymmetric vibrations also. The less dominant are the rotational, and the least dominant are the
extensional. For m ¼ 1; the values of Umax=Wmax and Vmax=Wmax are 0.07 and 0.41 for n ¼ 4; and
0.074 and 0.117 for n ¼ 8:

Fig. 5. Mode shapes of axisymmetric vibrations.
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6. Conclusions

Layering of the shell wall influences the natural frequencies of the vibration of the cylindrical
shell. The materials of the layers, as well as the relative thickness between them affect the
frequencies. A desired frequency of vibration, within a range of frequencies, may be obtained by a
proper choice of the relative thickness of layers among the chosen materials of the layers.

Fig. 6. Variation of frequency parameter with circumferential node number and the effect of coupling.
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The clamped–clamped boundary conditions give rise to higher frequencies in comparison with
the hinged–hinged boundary conditions. The neglect of coupling between the longitudinal and
radial displacements results in increase of frequency values in general. However the increase is
negligibly small.
With increase in length of the cylinder the natural frequencies of vibration decrease in general.

The decrease is rapid for short shells and meager for long shells. With the increase in thickness of

Fig. 7. Effect of length of the shell and boundary conditions on frequencies of asymmetric vibrations.
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shell wall the frequencies increase almost linearly. Both the above effects are felt more for higher
longitudinal mode numbers.
All the above phenomena are observed in axisymmetric as well as asymmetric vibrations. With

increase in circumferential node number the frequencies decrease initially and then increase. All
the above characteristics except those described in the first paragraph are in close agreement with
the vibrational behaviour of homogeneous thin cylindrical shells.

Fig. 8. Effect of thickness parameter and boundary conditions on frequency parameter of asymmetric vibrations.
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Appendix A

The quantities Si (i ¼ 2; 3;y; 12) appearing in Eqs. (5)–(13) are defined by

S2 ¼ A12=A11; S3 ¼ A22=A11; S4 ¼ B11=cA11;

S5 ¼ B12=cA11; S6 ¼ B22=cA11; S7 ¼ D11=c
2A11;

Fig. 9. Mode shapes of asymmetric vibraitons.
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S8 ¼ D12=c
2A11; S9 ¼ D22=c

2A11; S10 ¼ A66=A11;

S11 ¼ B66=cA11; S12 ¼ D66=c
2A11;

where

Aij ¼
X

k

S
ðkÞ
ij ðzk � zk�1Þ; Bij ¼

1

2

X
k

S
ðkÞ
ij ðz2k � z2k�1Þ

and

Dij ¼
1

3

X
k

S
ðkÞ
ij ðz3k � z3k�1Þ;

with

S
ðkÞ
11 ¼

EðkÞ
x

1� uðkÞxy u
ðkÞ0

yx

S
ðkÞ
12 ¼

uðkÞyx EðkÞ
x

1� uðkÞxy u
ðkÞ
yx

;

S
ðkÞ
22 ¼

E
ðkÞ
y

1� uðkÞxy u
ðkÞ0

yx

S
ðkÞ
66 ¼ G

ðkÞ
xy :

Aij; Bij and Dij are, respectively, the extensional rigidities, the bending–stretching coupling
rigidities and the bending rigidities.

Appendix B

The field equations appearing in the text are

A0a0 þ A0
s

N
a1 þ 2þ A0

s2

N2

� �
a2 þ

XN�1

j¼0

6
ðs � jÞ

N
þ A0

ðs � jÞ3

N3

� �
bj

þ A1C1 þ 2A1
s

N
C2 þ 3A1

XN�1

j¼0

ðs � jÞ2

N2
dj þ A2e1 þ 2A2

s

N
e2 þ 3A2

s2

N2
þ 6A3

� �
e3

þ 4A2
s3

N3
þ 24A3

s

N

� �
e4 þ

XN�1

j¼0

60A3
ðs � jÞ2

N2

�
þ 5A2

ðs � jÞ4

N4

�
fj

þ l2 a0 þ a1
s

N

�
þ a2

s2

N2
þ
XN�1

j¼0

bj

ðs � jÞ3

N3

�
¼ 0; ðB:1Þ
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B0a1 þ 2B0
s

N
a2 þ 3B0

XN�1

j¼0

ðs � jÞ2

N2
bj þ B2c0 þ B2

s

N
c1 þ 2B1 þ B2

s2

N2

� �
c2

þ
XN�1

j¼0

6B1
ðs � jÞ

N
þ B2

ðs � jÞ3

N3

� �
dj þ B4e0 þ B4

s

N
e1 þ 2B3 þ B4

s2

N2

� �
e2

þ 6B3
s

N
þ B4

s3

N3

� �
e3 þ 12B3

s2

N2
þ B4

s4

N4

� �
e4 þ

XN�1

j¼0

20B3
ðs � jÞ3

N3
þ B4

ðs � jÞ5

N5

� �
fj

þ l2 c0 þ c1
s

N
þ c2

s2

N2
þ
X

dj

ðs � jÞ3

N3

� �
¼ 0; ðB:2Þ

E0a1 þ 2E0
s

N
a1 þ 3E0

XN�1

j¼0

ðs � jÞ2

N2
bj þ E1c1 þ 2E2

s

N
c1 þ 2E2 þ E1

s2

N2

� �
c2

þ
XN�1

j¼0

6E2
ðs � jÞ

N
þ E1

ðs � jÞ3

N3

� �
dj þ E3e0 þ E3

s

N
e1 þ 2E4 þ E3

s2

N2

� �
e2

þ 6E4
s

N
þ E3

s3

N3

� �
e3 þ 12E4

s2

N2
þ 24E5

�
þ E3

s4

N4

�
e4

þ
XN�1

j¼0

20E4
ðs � iÞ3

N3
þ 120E5

s � j

N

�
þ E3

ðs � jÞ5

N5

�
fj

þ l2
 

e0 þ e1
s

N
þ e2

s2

N2
þ e3

s3

N3
þ e4

s4

N4
þ
XN�1

j¼0

ðs � jÞ5

N5
fj þ A3a1

þ 2A3
s

N
a2 þ 3A3

XN�1

j¼0

ðs � jÞ2

N2
bj

!
¼ 0 ðs ¼ 0; 1; 2;y;NÞ ðB:3Þ

Here

A0 ¼ �S10
n2

R2
; A1 ¼ S2 þ S10 þ

S5 þ 2S11

R

� �
n

R
;

A2 ¼ ðS5 þ 2S11Þ
n2

R2
þ

S2

R
; A3 ¼ �S4;

B0 ¼ � S2 þ S10 þ
S5 þ S11

R

� �
n

R
;

B1 ¼ S10 þ
3S11

R
þ
2S12

R
;

B2 ¼ � S3 þ
2S2

R
þ

S9

R2

� �
n2

R2
;
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B3 ¼ S5 þ 2S11 þ
S8 þ 2S12

R

� �
n

R
;

B4 ¼ � S6 þ
S9

R

� �
n3

R3
� S3 þ

S6

R

� �
n

R2
;

E0 ¼ S4S10
n2

R2
� ðS5 þ 2S11Þ

n2

R2
�

S2

R
;

E1 ¼ � S6 þ
S9

R

� �
n3

R3
� S3 þ

S6

R

� �
n

R2
;

E2 ¼ S5 þ 2S11 þ
S8 þ 4S12

R

� �
n

R
� S4 S2 þ S10 þ

S5 þ 2S11

R

� �
n

R
;

E3 ¼ �S9
n4

R4
� S3

1

R2
� 2S6

n2

R3
;

E4 ¼ 2ðS8 þ 2S12Þ
n2

R2
þ
2S5

R
� S4ðS5 þ 2S11Þ

n2

R2
�

S4S2

R
;

E5 ¼ S2
4 � S7

and Xs�1
j¼0

fyg ¼ 0 for s ¼ 0: ðB:4Þ
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